Stationary Distribution of Markov Matrix and Weights for Determination of Ultimate Cross Efficiency in Dea
نویسنده
چکیده
This paper firstly reviews the cross efficiency evaluation method which is an extension tool of data envelopment analysis (DEA), then we describe the main shortcomings when the ultimate average cross efficiency scores are used to evaluate and rank the decision making units (DMUs). Subsequently, we eliminate the assumption of average and utilize the stationary distribution of Markov matrix to determine the weights for ultimate cross efficiency scores and the procedures are introduced in detail. In the end, an empirical example is illustrated to examine the validity of the proposed method.
منابع مشابه
Cross Efficiency Evaluation with Negative Data in Selecting the Best of Portfolio Using OWA Operator Weights
The present study is an attempt toward evaluating the performance of portfolios and asset selectionusing cross-efficiency evaluation. Cross-efficiency evaluation is an effective way of ranking decisionmaking units (DMUs) in data envelopment analysis (DEA). Conventional DEA models assume nonnegativevalues for inputs and outputs. However, we know that unlike return and skewness, varianceis the on...
متن کاملIMPROVING THE SELECTION SYMMETRIC WEIGHTS AS A SECONDARY GOAL IN DEA CROSS-EFFICIENCY EVALUATION
Recently, some authors proposed the use of symmetric weightsfor computing the elements of cross-efficiency matrix. In spite ofthe fact that the proposed method decreases the number of zeroweights, a large number of zero weights may still exist among inputand output symmetric weights. To decrease the number of input andoutput symmetric weights, this paper improves the proposed secondarygoal mode...
متن کاملMinimizing the Weights dispersion in Cross-Efficiency Measurement in data envelopment analysis
Because of the piecewise linear nature of the data envelopment analysis (DEA) frontier, the optimal multipliers of the DEA models may not be unique. Choosing weights from alternative optimal solutions of dual multiplier models is one of the most frequently studied subjects in the context of DEA. In this paper, the authors have been inspired by the idea of Cooper et al. (2011) to propose a li...
متن کاملAn algorithm for determining common weights by concept of membership function
Data envelopment analysis (DEA) is a method to evaluate the relative efficiency of decision making units (DMUs). In this method, the issue has always been to determine a set of weights for each DMU which often caused many problems. Since the DEA models also have the multi-objective linear programming (MOLP) problems nature, a rational relationship can be established between MOLP and DEA problem...
متن کاملObtaining a Unique Solution for the Cross Efficiency by Using the Lexicographic method
Cross efficiency is a method with the idea of peer evaluation instead of self-evaluation, and is used for evaluation and ranking Decision Making Units (DMUs) in Data Envelopment Analysis (DEA). Unlike most existing DEA ranking models which can only rank a subset of DMUs, for example non-efficient or extreme efficient DMUs, cross efficiency can rank all DMUs, even non-extreme ones. However, sinc...
متن کامل